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Outline:

1. Domain patterns in perpendicularly-magnetized films
2. Role of topological defects (dislocations)

3. ac magnetic susceptibility measurements, y(T)

4. Measurements of defect population dynamics



2D magnetic pattern forming systems
Stripe magnetic domains near equilibrium in ultrathin films

O. Portmann et al. Nature 422, 701 (2003)

C. Won et al. PRB 71, 224429 (2005)
Static images for microscopy.

What about dynamics?
How do the patterns evolve near equilibrium?

Other 2D systems:

« surface adsorbates

o Langmuir films

e polymer films

« High-T, superconductors



Perpendicularly—magnetized ultrathin films
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Defects accompany domain creation

Microscopy image

_ C. Won et al. PRB 71, 224429 (2005)
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Additional energy of the topological defect

Kashuba and Pokrovsky, Phys. Rev. B 48, 10335 (1993)

Without knowing the precise position of domain walls u(x,y) that make up the
metastable topological defect, in general:
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Metastable domain density and susceptibility
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Including the defect energy changes the susceptibility
by varying the fitting parameters linearly with the
defect density. The relaxation of g(T) can be extracted

from the relaxation of y(T).



Magnetic susceptibility measurements

PRB 80, 184412 (2009)

Experiments with

different heating rates

 perpendicularly-magnetized
Fe/2 ML Ni/W(110) films

e ac field of 2 Oe at 210 Hz

Experimental procedure

e anneal film to 400 K
e cool at -0.1 K/s to 200 K

» heat at different constant rates, R,
to a maximum of 360 K
e rates chosen in random order

1.5 ML Fe/2ML Ni/W(110)
Measured while heating
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Quantifying the changes in

the susceptibility 0
>
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Prediction: Shift is due to
defect energy

InA=(14+yq)InA,

K= (1+vyq)K,
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1.5 ML Fe/2 ML Ni/W(110)
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Prediction: Population dynamics of defects reflected in ¢
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Prediction: Population dynamics

of defects reflected in y

Solve differential equation, using
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Ko
from the experimental traces,

using different heating rates R.

Exponential growth erases
memory quickly.

Fitted ye = 0.45 gives 30% of
the domain energy is due to
defects at large heating rates.
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Conclusions

Magnetic domain patterns in ultrathin films can be studied in
detail using the magnetic susceptibility

Domain growth process leaves topological defects that
decay very slowly and alter the magnetic compressibility

Resulting shift and shape change in the magnetic
susceptibility peak can be used to follow the population
dynamics of the topological defects

Quantitative modeling gives:
Internally consistent model of defect energy on K_x(T)
Fundamental relaxation time 0.7 s
Activation energy 1600 K
Up to 30% of domain energy due to topological defects



