

Collaborators

M. Poirier Département de Physique Université de Sherbrooke, Sherbrooke, QC, Canada

T. Usui, T. Kimura Division of Materials Physics, Osaka University, Osaka, Japan

Spin-Driven Multiferroics

057604, 2009.

Spin-Driven Multiferroics

As spiral magnetic orders

arise from spin frustration

Table 2. A list of multiferroics with spiral spin-order-induced ferroelectricity.

Compound	Crystal structure	Magnetic ions	Spiral spin wave vector q	Ferroelectric temperature (K)	Spontaneous polarization ($\mu C m^{-2}$)
LiCu ₂ O ₂	Orthorhombic (Pnma)	Cu ²⁺	(0.5, 0.174, 0)	<23	$P_c = 4$
LiCuVO ₄	Orthorhombic (Pnma)	Cu^{2+}	(0, 0.53, 0)	< 3	$P_a = 20$
$Ni_3V_2O_8$	Orthorhombic (mmm)	Ni^{2+}	(0.28, 0, 0)	3.9-6.3	$P_{b} = 100$
$RbFe(MoO_4)_2$	Triangular $(P\overline{3}m1)$	Fe^{3+}	(1/3, 1/3, 0.458)	< 3.8	$P_{c} = 5.5$
CuCrO ₂ , AgCrO ₂	Delafossite $(R\bar{3}m)$	Cr^{3+}	(1/3, 1/3, 0)	<24	30 ^b
NaCrO ₂ , LiCrO ₂	Ordered sock salt $(R\bar{3}m)$	Cr ³⁺	(1/3, 1/3, 0) and $(-2/3, 1/3, 1/2)$	< 60	Antiferroelectricity
CuFeO ₂	Delafossite $(R\bar{3}m)$	Fe^{3+}	(b, b, 0) b = 0.2 - 0.25	<11	$P = 300 \ (\perp c) \ (H = 6-13T)^{a}$
$\frac{\text{Cu(Fe,Al/Ga)O}_2}{\text{Al/Ga}=0.02}$	Delafossite $(R\bar{3}m)$	Fe ³⁺	2	<7	$P_{[110]} = 50$
$RMnO_3$ (R = Tb,Dy)	Orthorhombic (Pbnm)	Mn ³⁺	(0, k, 1) k = 0.2 - 0.39	< 28	$P_{\rm c} = 500$
CoCr ₂ O ₄	Cubic spinel $(m3m)$	Cr^{3+}	(b, b, 0) B = 0.63	< 26	$P_c = 2$
$AMSi_2O_6$ (A=Na,Li; M=Fe,Cr)	Monoclinic $(C2/c)$	Fe^{3+} Cr^{3+}	2	<6	$P_{b} = 14$
MnWO ₄	Monoclinic $(Pc/2)$	Mn ²⁺	(-0.21, 0.5, 0.46)	7-12.5	$P_{b} = 55$
CuO	Monoclinic $(C2/c)$	Cu^{2+}	(0.506, 0, -0.843)	213-230	$P_b = 150$
$(Ba,Sr)_2Zn_2Fe_{12}O_{22}$	Rhomboheral Y-type hexaferrite	Fe ³⁺	$(0, 0, 3d) \ 0 < d < 1/2$	< 325	$150 (H=1 \mathrm{T})^{a}$
$Ba_2Mg_2Fe_{12}O_{22}$	Rhomboheral Y-type hexaferrite	Fe ³⁺	//[001]	<195	$P_{[120]} = 80 (H = 0.06 - 4 \text{ T})^{a}$
ZnCr ₂ Se ₄	Cubic spinel	Cr^{3+}	(b, 0, 0)	< 20	_a
Cr_2BeO_4	Orthorhombic	Cr ³⁺	(0, 0, b)	<28	3 ^b

^aAn external magnetic field is needed to induce the spiral spin order and then the ferroelectricity. ^bPolycrystalline samples.

<u>CuO</u>

Magnetic and Electric Properties

Sound Velocity Measurements

Landau Model CuO

Landau Free Energy: $F_L = F_{2I} + F_{2A} + F_4 + F_Z$

Second Order Isotropic Contribution:

$$F_{2I} = \frac{1}{2V^2} \int d\vec{r_1} d\vec{r_2} A(\vec{r_1}, \vec{r_2}) s(\vec{r_1}) \cdot s(\vec{r_2})$$

Second Order Single-ion Anisotropic Contribution:

$$F_{2A} = \frac{1}{2V} \int d\vec{r} \left\{ D_y(\vec{r}) s_y(\vec{r}) s_y(\vec{r}) + D_z(\vec{r}) s_z(\vec{r}) s_z(\vec{r}) + D_{xz}(\vec{r}) s_z(\vec{r}) \right\}$$

Fourth Order Isotropic Contribution:

$$F_4 = \frac{1}{4V^4} \int d\vec{r_1} d\vec{r_2} d\vec{r_3} d\vec{r_4} \left\{ B(\vec{r_1}, \vec{r_2}, \vec{r_3}, \vec{r_4}) \ s(\vec{r_1}) \cdot s(\vec{r_2}) \ s(\vec{r_3}) \cdot s(\vec{r_4}) \right\}$$

Spin Density

Local Spin Density:
$$\vec{s}(\vec{r}) = \frac{V}{N} \sum_{R} \vec{\rho}(\vec{r}) \ \delta(\vec{r} - \vec{R})$$

Non-local Spin Density

$$\vec{\rho}(r) = \vec{m} + \vec{S}e^{i\vec{Q}\cdot\vec{r}} + \vec{S}^*e^{-i\vec{Q}\cdot\vec{r}}$$

Q wave vector associated with the spin configuration

where
$$\vec{S} = \vec{S}_1 + i \vec{S}_2$$

$$\vec{S}_1 = S \cos \beta \left[\cos \gamma \, \hat{y} + \sin \gamma \, \hat{\rho}_2 \right]$$

$$\vec{S}_2 = S \sin \beta \left[\cos \theta \, \hat{\rho}_1 + \sin \theta \, (\cos \gamma \, \hat{y} + \sin \gamma \, \hat{\rho}_2) \right]$$

 $\hat{\rho}_1 = \cos\alpha \, \hat{x} + \sin\alpha \, \hat{z}$ $\hat{\rho}_2 = -\sin\alpha \, \hat{x} + \cos\alpha \, \hat{z}$

two orthogonal unit vectors in the ac-plane

Wave Vector Q

Second Order Isotropic Contribution:

$$\begin{split} \mathsf{J}(\mathsf{Q}) &= 2 \left[\mathsf{J}_1 \mathsf{f}_1(\mathsf{Q}) + \mathsf{J}_2 \mathsf{f}_2(\mathsf{Q}) + \mathsf{J}_3 \mathsf{f}_3(\mathsf{Q}) + \mathsf{J}_4 \mathsf{f}_4(\mathsf{Q}) \right] \\ \mathsf{f}_1(\mathsf{Q}) &= \cos \left(\pi \, \mathsf{q}_a - \pi \, \mathsf{q}_c \right) \\ \mathsf{f}_2(\mathsf{Q}) &= \cos \left(\pi \, \mathsf{q}_a + \pi \, \mathsf{q}_c \right) \\ \mathsf{f}_3(\mathsf{Q}) &= \cos \left(\pi \, \mathsf{q}_a - \pi \, \mathsf{q}_b \right) + \cos \left(\pi \, \mathsf{q}_a + \pi \, \mathsf{q}_b \right) \\ \mathsf{f}_4(\mathsf{Q}) &= \cos \left(\pi \, \mathsf{q}_b - \pi \, \mathsf{q}_c \right) + \cos \left(\pi \, \mathsf{q}_b + \pi \, \mathsf{q}_c \right) \end{split}$$

$\begin{aligned} \frac{Magnetic Phase Diagram of CuO}{F_{L}} = A_{Q}S^{2} - D_{yQ}|S_{y}|^{2} - D_{zQ}|S_{z}|^{2} + D_{xzQ}S_{x}S_{z} + B_{1}S^{4} + \frac{1}{2}B_{2}|\vec{S}\cdot\vec{S}|^{2} + \frac{1}{4}B_{U}[(\vec{S}\cdot\vec{S})^{2} + c.c]\Delta_{4Q,G} \\ + \frac{1}{2}A_{o}m^{2} + \frac{1}{4}B_{3}m^{4} + 2B_{4}|\vec{m}\cdot\vec{S}|^{2} + B_{5}m^{2}S^{2} - H\cdot m \end{aligned}$ $A_{O} = a(T - T_{O})$

Numerical Predictions

Experimental Results

Spin Configurations

Conclusions

•new collinear phase (AF3) detected between the PM and the spiral phase (AF2).

• for B // b, we also observe a spin-flop phase (HF1) at low temperatures.

• Complementary dielectric measurements confirm that magnetoelectric effects exist only in the spiral phase (AF2).

the existence of the intermediate phase AF3 is supported by our Landau model.

• The model predicts additional phase transitions possibly at higher fields.

•Finally, the proposed model is potentially useful for the description of other monoclinic multiferroic systems, such as $MnWO_4$ and $AMSi_2O_{6}$.

References

- R. Villarreal et al., <u>cond-mat</u> : arXiv:1205.5229v1 (2012)
- T. Kimura et al., Nature Materials, 7, 291, (2008)

<u>MnWO₄</u>

V. Felea et al., J. Phys.: Cond. Matter 23, 216001 (2011).

